If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x^2)+(3x/20)=90
We move all terms to the left:
(x^2)+(3x/20)-(90)=0
We add all the numbers together, and all the variables
x^2+(+3x/20)-90=0
We get rid of parentheses
x^2+3x/20-90=0
We multiply all the terms by the denominator
x^2*20+3x-90*20=0
We add all the numbers together, and all the variables
x^2*20+3x-1800=0
Wy multiply elements
20x^2+3x-1800=0
a = 20; b = 3; c = -1800;
Δ = b2-4ac
Δ = 32-4·20·(-1800)
Δ = 144009
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{144009}=\sqrt{9*16001}=\sqrt{9}*\sqrt{16001}=3\sqrt{16001}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{16001}}{2*20}=\frac{-3-3\sqrt{16001}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{16001}}{2*20}=\frac{-3+3\sqrt{16001}}{40} $
| -(7-4x)=9+2 | | 1x-(-3)=8 | | 16=7/12x | | |6x-2|=20 | | 10x-25=3x+38 | | 7x+13=12x-12 | | q+-862=45 | | -8(6+5k)=3k-5 | | (4m+9)-3(2m-5)=0 | | 2(4b-3)-8=4+2b | | p-346=43 | | 3x+5-5x=29 | | 3(y−1)+y=1 | | 4x+30=-2x+30 | | 5(x+2)-4(x-3)=23 | | 19m÷20=0.95 | | 30=j/3+25 | | 70=10p+130 | | 5x-2(2+4x)=6x-5 | | -2(1-7y)-8=5y+34 | | 41(x+1)=9 | | 5(x)=3x+8P(x)=x+2 | | X=12=3x+30 | | B-10+c=180 | | 12x-2=7x+12 | | (x)=x+2 | | 1.4+1.7x=-1.3 | | 5e+7=27 | | u-7=-14 | | 2(c-5)=-6 | | y=81× | | P(x)=x+2 |